The Spectral Projections and the Resolvent for Scattering Metrics

نویسنده

  • ANDREW HASSELL
چکیده

In this paper we consider a compact manifold with boundary X equipped with a scattering metric g as defined by Melrose [9]. That is, g is a Riemannian metric in the interior of X that can be brought to the form g = x dx + xh near the boundary, where x is a boundary defining function and h is a smooth symmetric 2-cotensor which restricts to a metric h on ∂X. Let H = ∆ + V where V ∈ xC(X) is real, so V is a ‘shortrange’ perturbation of ∆. Melrose and Zworski started a detailed analysis of various operators associated to H in [11] and showed that the scattering matrix of H is a Fourier integral operator associated to the geodesic flow of h on ∂X at distance π and that the kernel of the Poisson operator is a Legendre distribution on X×∂X associated to an intersecting pair with conic points. In this paper we describe the kernel of the spectral projections and the resolvent, R(σ± i0), on the positive real axis. We define a class of Legendre distributions on certain types of manifolds with corners, and show that the kernel of the spectral projection is a Legendre distribution associated to a conic pair on the b-stretched product X b (the blowup of X about the corner, (∂X)). The structure of the resolvent is only slightly more complicated. As applications of our results we show that there are ‘distorted Fourier transforms’ for H, ie, unitary operators which intertwine H with a multiplication operator and determine the scattering matrix; and give a scattering wavefront set estimate for the resolvent R(σ ± i0) applied to a distribution f .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-Rank Multivariate-Basis Expansions of the Resolvent Operator as a Means of Solving the Multivariable Lippmann–Schwinger Equation for Two-Particle Scattering

Finite-rank expansions of the two-body resolvent operator are explored as a tool for calculating the full three-dimensional two-body T -matrix without invoking the partial-wave decomposition. The separable expansions of the full resolvent that follow from finite-rank approximations of the free resolvent are employed in the Low equation to calculate the T-matrix elements. The finite-rank expansi...

متن کامل

ar X iv : d g - ga / 9 71 10 16 v 1 2 0 N ov 1 99 7 SCATTERING THEORY AND DEFORMATIONS OF ASYMPTOTICALLY HYPERBOLIC METRICS

For an asymptotically hyperbolic metric on the interior of a compact manifold with boundary, we prove that the resolvent and scattering operators are continuous functions of the metric in the appropriate topologies.

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999